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1.  INTRODUCTION

The relative sizes of predators and prey influence
the structure, stability, and resilience of food webs
(Barnes et al. 2010, Trebilco et al. 2013). Yet fishery re -
movals, combined with changes in climate, have led
to declines in large size classes of predators and de -
gradation of food webs (Harvey et al. 2006, Petchey &
Belgrano 2010, Shackell et al. 2010, Strong & Frank

2010). To better predict how marine communities
might respond to the loss of large size classes of pred-
ators and to implement ecosystem-based fisheries
management (Pikitch et al. 2004), there is an urgent
need to identify and  better understand size-based
trophic inter actions (Petchey & Belgrano 2010, Strong
& Frank 2010).

Predatory fishes can exert top-down control on the
structure of marine ecosystems via prey removal or
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by inducing behavioral shifts of prey (Baum & Worm
2009, Madin et al. 2016), yet body size may modulate
the strength of these ecological interactions (Mc-
Cauley et al. 2010, Strong & Frank 2010, Heupel et al.
2014). Most predatory fishes swallow prey whole, and
their maximum prey size is constrained by the size of
their oral gape, which scales allometrically with body
size such that larger individuals can consume larger
prey (Scharf et al. 2000, Karpouzi & Stergiou 2003,
Barnes et al. 2010). Consequently, trophic level of
fishes may scale positively with maximum body size
interspecifically, reflecting size variation among pred-
ator species (Jennings et al. 2001, Romanuk et al.
2011). Intraspecifically, ontogenetic growth of indi-
vidual predators may also result in trophic level in-
creases with larger body size (Werner & Gilliam 1984,
Karpouzi & Stergiou 2003, Marsh et al. 2017). Not all
studies, however, have found positive slopes for body
size−trophic level relationships, and some of this vari-
ation has been attributed to  species-specific morpho-
logical traits (Ríos et al. 2019), phylogenetic differ-
ences at the level of taxonomic order (Romanuk et al.
2011), or foraging strategies (Ou et al. 2017).

The extent to which individual predators consume
small prey items throughout their ontogenetic size
range might influence the extent to which body size
scales positively with trophic level. Prey items that
are much smaller than the maximum expected size
(based on gape limitation) require less time and
energy to capture and may yield higher net energy
gain than larger prey items (Werner et al. 1983, Gill
2003). Consistent with this notion, maximum prey
size generally increases with predator body size
while minimum prey size remains relatively constant
as individuals grow (Scharf et al. 2000, Juanes 2016).
A wider spectrum of prey sizes may lead to a greater
diversity of taxa consumed by larger predators. For
instance, off the Washington (USA) coast, lingcod
Ophio  don elongatus — a predatory fish — fed almost
exclusively on Pacific sand lance Ammo -
dytes hexapterus when at small size
(total length ≤30 cm), but its diet encom-
passed 9 fish families and 3 invertebrate
families when at larger sizes (Beaudreau
& Essington 2007).

Little is known about the status of size-
dependent trophic interactions on tem-
perate rocky reef fishes of the Northeast
Pacific, where 2 genera of predatory
fishes — rockfishes (Sebastes spp.) and
lingcod — potentially exert top-down
control on prey communities (Beaudreau
& Essington 2007, Frid & Marliave 2010,

Frid et al. 2012). Rockfish species diversity is large; it
encompasses wide variation in maximum size, mor-
phological and life history traits, prey preferences,
and relative use of benthic and pelagic habitats (Love
et al. 2002). Many rockfishes are long-lived and slow-
growing, and some reach maximum lengths of nearly
1 m (e.g. yelloweye rockfish S. ruber rimus, max.
age = 118 yr and max. total length = 91 cm; Love et
al. 2002), which potentially makes them upper-level
predators. Lingcod are the only extant member of
their genus. Their lifespan is relatively short, but
their maximum total length exceeds that of any rock-
fish (max. age = 25 yr; max. total length = 152 cm;
Froese & Pauly 2019), potentially making adult ling-
cod a top predator in the system.

In Pacific Canada, size-dependent trophic relation-
ships involving lingcod or rockfish may be changing.
Although lingcod stocks were last assessed as
‘healthy’ (King et al. 2012), several rockfish species
have a tenuous conservation status. For example,
yellow eye rockfish are listed as a species of ‘special
concern’ under the Species at Risk Act (Fisheries and
Oceans Canada 2018), and quillback rockfish S.
maliger are listed as ‘threatened’ by the Committee
on the Status of Endangered Wildlife in Canada
(COSEWIC 2009). On the central coast of British
Columbia, both rockfish species have been declining
in average body size, which suggests that fishery
exploitation might be affecting the strength of top-
down control in rocky reef communities (McGreer &
Frid 2017, Eckert et al. 2018).

To better understand these potential changes to
rocky reefs, we used field data collected on British
Columbia’s central coast to examine size-based tro -
phic structure and diets of 4 species of predatory
fish: lingcod, yelloweye rockfish, quillback rockfish,
and yellowtail rockfish S. flavidus. Importantly,
these species differ in maximum known body sizes
(Table 1), yet all 4 are Scorpaeniformes (i.e. their
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Common name          Scientific name         Max. total   Max.    Primary
                                                                          length    lifespan  feeding 
                                                                            (cm)          (yr)        mode

Lingcod                       Ophiodon elongatus      152           25       Mixed
Yelloweye rockfish    Sebastes ruberrimus      91           118       BPMP
Yellowtail rockfish     Sebastes flavidus            66           64      Pelagic
Quillback rockfish     Sebastes maliger            50           95       BPMP

Table 1. The 4 fish species examined and their key biological characteris-
tics as determined from the literature (Love et al. 2002, Beaudreau & Ess-
ington 2007, Froese & Pauly 2019). BPMP: benthic predator of mobile prey
(e.g. crabs, fish); Pelagic: planktivore or piscivore of pelagic prey; Mixed: 

both pelagic and benthic mobile prey consumed frequently
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phylogenetic history is shared at the level of order)
and have similar morphometric traits (i.e. thoracic
pelvic fin, maxillary extends to center or posterior
end of eye, notched dorsal fin; Hart 1973) associated
with positive slopes in body size−trophic level rela-
tionships (Ríos et al. 2019). Morphology and phy-
logeny, therefore, are unlikely to confound size
effects on trophic position (TP) for these species,
and we expected TPs to scale positively with body
size within and among species (Romanuk et al.
2011, Ríos et al. 2019).

2.  MATERIALS AND METHODS

2.1.  Specimen collections

Fish specimens were collected from rocky reefs on
the central coast of British Columbia, Canada, in
Heiltsuk, Kitasoo/ Xai’xais, Nuxalk, and Wuikinuxv
First Na tions territories (Fig. 1) in 2015 and 2016.
These collections occurred during a study on popula-
tion trends using methods detailed by Frid et al.
(2016). From spring to fall, fish sampling occurred at
rocky reefs with varying depth, exposure, and regio -
nal oceanographic processes. Two methods were
used: (1)  fishery-independent sampling with hook-

and-line jigging gear and standardized lures target-
ing depths of 10−200 m (mean = 47 m), and (2) oppor-
tunistic sampling in association with local indigenous
fisheries for food, social, and ceremonial purposes
that targeted depths of 5−120 m with hook-and-line
gear (unbaited hooks, various jigging lures) or
depths of ~50−100 m with 550−1100 m long ground
lines equipped with 100−200 baited circle hooks.

In the field and shortly after specimen collection,
fish morphometrics were measured, including total
length (TL, cm), weight (kg), and gape width (cm).
Gape width was measured with a ruler across the
horizontal plane of the mouth from one side of the
inner jaw to the other (i.e. oral gape: Mihalitsis &
Bellwood 2017). Entire stomachs and dorsal muscle
tissue samples were immediately frozen for stomach
content analysis and stable isotopes, respectively.
Some stomachs, particularly those of yelloweye rock-
fish, were everted due to decompression (i.e. baro-
trauma) and therefore empty. Rockfish otoliths and
lingcod dorsal fins (48th ray) were also collected for
age analysis at the DFO Pacific Biological Station
Sclerochronology Laboratory (Frid et al. 2016).
Although a diversity of reef species was collected,
only yelloweye rockfish, quillback rockfish, yellow-
tail rockfish, and lingcod had sufficient sample sizes
for analyses.

2.2.  Stable isotope preparation

Stable isotope analysis is an estab-
lished method of estimating long-
term diets of consumers in ecological
systems. The δ13C isotope of a con-
sumer can represent the mixture of
its prey sources because little frac-
tionation occurs in δ13C during the
trophic transfer of energy from prey
to predator (Peterson & Fry 1987). In
contrast, enrichment in the δ15N iso-
tope oc curs with each trophic transfer
(e.g. predator−prey interaction) in
consumer tissue by ~3.4‰ (Mina-
gawa & Wada 1984), but can vary
due to numerous factors (see Mc-
Cutchan et al. 2003). Expected en-
richments in δ15N among trophic in-
teractions can be used as a proxy for
increasing TP, whereby one can infer
consumer TP by assessing its δ15N
signature relative to the δ15N from
the base of the food web (Post 2002).
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Fig. 1. Central coast of British Columbia, Canada. Fish were sampled at 48
rocky reef sites from Aristazabal Island in the north to Smith Sound in the
south and encompassed protected inside and exposed outside waters (blue
box). Individual sampling locations are not displayed in order to protect First
Nations fishing areas (see Frid et al. 2016 for site details). Red sea urchins 

were collected at sites across the same spatial gradient (red circles)



Mar Ecol Prog Ser 640: 189–200, 2020192

The δ13C and δ15N stable isotope values of rockfish
and lingcod were used to determine long-term
dietary assimilation and TP. Fish dorsal muscle tissue
was thawed, visually inspected and cleared of debris,
and then rinsed in 2 baths of deionized water. Tissue
samples were oven-dried for 48 h at 60°C, ground to
a fine powder with a Wig-L-Bug, and packaged in tin
capsules. Fish isotope signatures were analyzed at
the University of Victoria’s Mazumder Lab using a
Delta IV Isotope Ratio Mass Spectro meter and calcu-
lated as:

δ13C / δ15N = [(Rsample/Rstandard) − 1] × 1000 (1)

where R is the ratio of heavy to light isotope (13C:12C
or 15N:14N).

Red sea urchins Mesocentrotus franciscanus are
slow-growing and are estimated to reach 200 yr of
age (Ebert & Southon 2003). Given these life history
attributes, and their direct consumption of primary
producers in nearshore rocky reef systems (see Post
2002), red sea urchins likely represent a long-term
trophic baseline in rocky reef ecosystems. In 2013,
2−5 red sea urchins were collected by scuba at 10
sites on the central coast (Pang 2018) (Fig. 1). Con-
nective tissue around the Aristotle’s lantern was dis-
sected and frozen until thawed for laboratory pro-
cessing. Tissue samples were rinsed with 10% HCl
baths followed by deionized water baths, and oven
dried at 60°C for 48 h. Samples were ground with a
mortar and pestle, packaged in tin capsules, and sent
to the University of California Davis for δ13C and δ15N
isotopic analysis (and calculated with Eq. 1) using a
PDZ Europa 20-20 Isotope Ratio Mass Spectrometer
(Pang 2018). All fish and red urchin isotopes are
reported in permil (‰), relative to the international
standards Vienna PeeDee Belemnite and air for car-
bon and nitrogen, respectively. Average stable iso-
tope values are reported with standard deviation
(SD), unless otherwise stated.

Differences in tissue preparation techniques (e.g.
rinse methods) and laboratories (Pestle et al. 2014),
and differences in collection year, may influence
 isotopic comparisons. However, sea urchin isotopic
values in this study were similar to elsewhere (i.e.
Newsome et al. 2009, Szpak et al. 2013). Local envi-
ronmental conditions are also likely contributors to
variation in isotope values. By using the average val-
ues of sea urchins across the same spatial gradient as
fish were collected (Fig. 1), we attempted to capture
similar spatial variability (see Fig. S1 in the Sup -
plement at www. int-res. com/ articles/ suppl/  m640 p189_
supp. pdf). Moreover, δ15N values showed no regional
patterns in site-level differences in fish (i.e. no

groupings by ocean subregion: Fig. S2) and thus, we
assessed trophic trends for the study area as a whole.

2.3.  Trophic level estimations

We estimated the TP of rockfish species and ling-
cod using predicted δ15N enrichments relative to
red urchins (i.e. basal source). Calculating con-
sumer TP with δ15N may be conducted using an
additive framework, assuming that the change in
δ15N is constant and typically 3.4‰ (Minagawa &
Wada 1984) between predator and prey trophic
transfers (see Post 2002). However, recent evidence
(e.g. Caut et al. 2009) shows that δ15N generally de -
creases, or ‘scales,’ with TP which has been seen
across many types of fauna, including fishes
(Hussey et al. 2014a). Here, we estimated fish TP
with a scaled approach using Eqs. (2) to (4) from
Hussey et al. (2014a,b):

TP = log (δ15Nlim − δ15Nbase) 
− log (δ15Nlim − δ15Nconsumer)/k + TPbase

(2)

where:

(3)

(4)

Values for β0 and β1 were taken from Hussey et al.
(2014a). TPbase was assigned a value of 2 (second
trophic level) because sea urchins are herbivorous
grazers in reef ecosystems that feed on primary pro-
ducers. δ15Nbase was set as the mean value of sea
urchins in the study region (8.75‰).

We used hierarchical general linear models to
examine interspecific influences on the relationship
be tween TP and fish length or gape width. Species
identity was used as a categorical variable. Fish
length or gape width, continuous variables, were
centered around zero (Gelman 2008, Bolker et al.
2009). To assess intraspecific relationships with TP,
an interaction term was used between morphomet-
ric characteristics and species identity. Post-hoc
Tukey’s contrasts were examined in the linear mod-
els for a pairwise comparison of species’ TP least
squares means using the R package ‘emmeans’
(Lenth et al. 2018). Differences in observed means
of species TP (i.e. determined by Eq. 2) were as -
sessed by ANOVA and post hoc Tukey’s HSD tests,
whereby significance was attained at alpha = 0.05.
All analyses were conducted in R (R Core Team
2017).
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2.4.  Prey size as a function of predator size

Fish stomachs were thawed and emptied for analy-
sis of recently consumed prey items. For each non-
empty stomach, prey were identified to the lowest
taxonomic level possible using a dissecting scope.
Individual prey items within a taxonomic level were
enumerated for total abundance and weighed (g) as a
group. If individual prey items were intact, TL (mm)
was measured. Lengths of partially digested prey
(2% of dataset) were recorded and analyzed; these
provide minimum estimates of maximum prey
lengths. Prey items were grouped in broad functional
groups for analysis (Table S1).  Prey composition was
first calculated for each predator species by taking
the mean weight or abundance of each prey item and
comparing it proportionally to all other prey items
found in species’ stomachs for % gravimetric (mass)
and % abundance, respectively.

We examined the upper and lower bounds of the
prey size spectrum as a function of predator body
size using quantile regression analysis. To account
for the hierarchical nature of the data, where multi-
ple prey lengths were often recorded from a single
predator, we used a mixed-effects quantile regres-
sion approach with individual predators categorized
as a random effect. Using the R package ‘lqmm’
(Geraci 2014), we quantified the maximum, median,
and minimum prey lengths by predator size using
95th, 50th, and 5th quantiles, respectively (Koenker
& Hallock 2001). The regression coefficients were
bootstrapped (r = 102) due to low sample size. To
determine the quantity of smaller prey consumed by
predators, we examined the relative frequency dis tri -
bu tions of the prey size to predator size ratio for each
predator (Scharf et al. 2000).

3.  RESULTS

A total of 159 specimens, representing 3 rock-
fish species and lingcod, were analyzed for stable
isotopes. We analyzed prey contents from the
stomachs of 141 fish, of which 46% were female,
51% were male, and the remainder had undeter-
mined sex. 67% of stomachs analyzed were non-
empty (Table 2). Fish were caught at depths rang-
ing from 18 to 110 m (median 65 m). Lingcod
were the largest fish caught by mass, length, and
gape width, while also being the youngest (3−
13 yr). Among rockfish, yelloweye rockfish were
on average the largest in size and oldest, while
yellowtail rockfish were the smallest in size
(Table 2).

Species varied in their mean δ13C and δ15N isotopic
positions (Fig. 2). Yelloweye and quillback rockfish,
which are primarily benthic predators, demonstrated
on average enriched δ13C values relative to pelagi-
cally associated yellowtail rockfish and lingcod. Yel-
lowtail rockfish and lingcod also showed twice the
variability in δ13C compared to benthic predators, ex -
tending to more depleted δ13C signatures. Red sea
urchins had an average δ15N value of 8.75 ± 0.85‰
(SD) and δ13C value of −16.12 ± 1.44‰ across sites
(Fig. S1).

A hierarchy in mean δ15N signatures was appar-
ent, such that yelloweye rockfish exhibited the
most δ15N enrichment (mean: 16.55 ± 0.45‰,
range: 15.23− 17.37‰). Yelloweye rockfish, lingcod,
and quillback rockfish were relatively enriched in
mean δ15N signatures compared to yellowtail rock-
fish (mean: 14.63 ± 0.50‰). For quillback rockfish,
variability in δ15N (SD = 0.80‰) was 1.6−1.8×
greater than for other species (Figs. 2 & 3).
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                                     Habitat Sample sizes                      Species morphometrics
                                   Depth (m)      Stomachs   Prey   Stable        Mean        Mean            Mean              TL           Mean 
                                                           (empty)              isotopes    mass (kg)    age (yr)          TL (cm)      range (cm)  gape (cm)

Yelloweye rockfish  66.5 ± 13.2       35 (19)a       47         55          2.2 ± 1.5   22.1 ± 10.2   48.4 ± 10.6   26.6−68.5   8.8 ± 2.4

Quillback rockfish   73.9 ± 21.7        79 (21)      199        69          1.0 ± 0.3   25.0 ± 11.9     37.2 ± 4.3     19.1−44.6   6.7 ± 1.2
Yellowtail rockfish   59.7 ± 13.0         12 (4)        57         16          0.6 ± 0.3    12.3 ± 6.4      35.9 ± 5.2     26.2−47.2   4.2 ± 1.1

Lingcod                     49.7 ± 20.4         15 (2)        71         19          4.6 ± 2.6    6.6 ± 3.1    76.4 ± 11.0   59.2−94.3   11.82 ± 2.6

aTwo empty yelloweye rockfish stomachs were everted due to barotrauma. A third yelloweye had an everted stomach that
we counted as non-empty because this individual had Pandalus spp. in its mouth

Table 2. Summary of collection depths (mean), sample sizes, and morphometrics (TL: total length) for fish species sampled.
Stomach sample sizes indicate total stomachs followed by the number of which were empty in brackets. Number of prey items 

in each stomach was based on items thought to be from individual prey. Errors are reported as SD
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3.1.  Trophic level estimates by predator sizes

Interspecifically, there were significant differences
in mean TP from models (Tables 3 & 4, Fig. 3) and
observed values (ANOVA: F3,155 = 41.74, p < 0.001).
The relative positioning among species did not match
expectations based on species’ known maximum

sizes (Table 1) or observed mean sizes (Table 2). On
average, lingcod specimens were largest in all size
metrics measured relative to rockfish. Yet, according
to model estimates that account for unbalanced sam-
ple sizes (LS means, Table 4), their mean TP was
lower than for quillback and yelloweye rockfish
which, on average, were 51 and 37% smaller (based
on TL) than lingcod, respectively (Table 2). Further,
the mean TP of lingcod did not differ significantly
from that of yellowtail rockfish, despite yellowtail
rockfish being, on average, 66% smaller. Similarly,
the mean TP of yelloweye rockfish did not differ sig-
nificantly from that of quillback rockfish, despite
quillback rockfish being, on average, 23% smaller
(Tables 2 to 4).

Overall and intraspecifically, however, TP scaled
positively with TL (overall: R2 = 0.53, Table 3) and
gape width (overall: R2 = 0.59, Table 3). Slopes
varied among species (Fig. 3, Table 3). Quillback
rockfish length and gape width had a significant
inter active relationship with TP (slope b = 0.66,
p < 0.05 and b = 0.75, p < 0.001, respectively),
while this was not significant for other species.
Variability was also greatest for quillback (e.g.
~40 cm long quillback varied by up to ~1.0 TP).
Given that length and gape width are positively
related (Fig. S3), gape− TP slopes generally resem-
bled length−TP slopes across species (Fig. 3B,
Table 3). Both TP and size (TL and gape) generally
increased with age (Fig. 3).
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Fig. 3. Relationships between fish trophic position with (A) body length and (B) gape width, for yelloweye rockfish, quillback rock-
fish, yellowtail rockfish, and lingcod. Grey shading indicates 95% confidence. Larger symbols represent older fish (20 yr bins), ages 

range from 3−66 yr
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3.2.  Relationships of predator size with prey
size and prey composition

We found a wide size range of prey items in
the stomachs of quillback rockfish and lingcod
specimens. However, using nested quantile
regression, we did not find significance in the
5th, median, or 95th quantiles of predator
size−prey size relationships of any species
examined despite the appearance of wedge-
shape patterns (Fig. S4). Although some indi-
viduals did consume very large prey items,
small prey items dominated the diets of each
species, such that the TL of most prey items
was <20% of predator length (Fig. 4). Yellow-
eye rockfish, however, ate a greater proportion
of larger prey items (28.6%) than quillback
rockfish (9.7%) and lingcod (7.4%) relative to
their body size (i.e. prey TL >20% of predator
TL, Fig. 4A), and overall (Fig. 4B). Larger sam-
ple sizes of predators and prey are needed for
a thorough assessment of predator and prey
size relationships for these species.

Prey composition was dominated by fish and
crustaceans (except for yellowtail rockfish:
Fig. S5), yet the proportions of these prey types
varied by species and size class (Fig. 5). By
mass, fish (e.g. Sebastes spp., Oncorhynchus
gorbuscha) were the primary prey (94%) con-
sumed by lingcod; numerically, however, a
variety of small-bodied species characterized
lingcod diets, including pelagic (euphausiids)
and benthic invertebrates (Fig. 5, Fig. S5). Sim-
ilarly, yellow eye rockfish diet was composed
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Model            Parameter                              Estimate    SE         p

Length−TP    Intercept                                    4.81       0.04   <0.001
                      Length                                        0.34       0.11      0.003
                      Species(yellowtail)                 −0.69       0.17   <0.001
                      Species(lingcod)                     −0.74       0.21   <0.001
                      Species(quillback)                  −0.13       0.09      0.158
                      Length × Species(yellowtail)    0.37       0.45      0.419
                      Length × Species(lingcod)        0.13       0.22      0.547
                      Length × Species(quillback)    0.66       0.27      0.018

Gape−TP      Intercept                                    4.80       0.04   <0.001
                      Gape                                          0.23       0.09   <0.001
                      Species(yellowtail)                  −0.45       0.25      0.07
                      Species(lingcod)                     −0.50       0.13   <0.001
                      Species(quillback)                  −0.22       0.06   <0.001
                      Gape × Species(yellowtail)       0.48       0.37      0.188
                      Gape × Species(lingcod)           0.07       0.17      0.674
                      Gape × Species(quillback)       0.75       0.18   <0.001

Table 3. Trophic position (TP) relationships with fish total length
(Length−TP) and gape width (Gape−TP). The species reference level
is set to yelloweye rockfish. Bold indicates significant estimates 

Species                          LS mean           LS mean           Observed
                                   (Length−TP)       (Gape−TP)            mean

Yelloweye rockfish    4.81 ± 0.04A      4.80 ± 0.04A      4.84 ± 0.26A

Quillback rockfish     4.68 ± 0.08A      4.58 ± 0.04B      4.40 ± 0.40B

Yellowtail rockfish     4.12 ± 0.16B     4.35 ± 0.24AB    3.88 ± 0.21C

Lingcod                       4.07 ± 0.21B      4.29 ± 0.13B      4.55 ± 0.25B

Table 4. Mean trophic position (TP) of fish species. TP was assessed
by the arithmetic mean (observed mean) and least squares (LS) means
from the Length−TP and Gape−TP models (Table 3). Letters indicate
significant difference among species TPs. LS estimates account for
unbalanced sample sizes and therefore differ from observed means. 

Errors are reported as SE
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Fig. 4. (A) Density distributions of the ratio of prey length to predator length. Predator fish are yelloweye rockfish, quillback
rockfish, and lingcod. Left of the dashed line indicates the frequency of prey that are less than 20% of the predator size. (B) Den-
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mainly of fish (e.g. Clupea pallasii) by both weight
(87%) and abundance (59%), yet also included
smaller prey items (Figs. 4 & 5, Fig. S5). Quillback
rockfish had the most diverse diet by weight: 48%
benthic shrimp (e.g. primarily Pandalus spp.), 31%
fish, 11% benthic crab (Pugettia spp., Cancer spp.),
and 6% pelagic euphausiids (Fig. 5, Fig. S5).

The data suggested ontogenetic diet shifts in prey
type for rockfishes. Invertebrates dominated the
stomach content of the smallest size classes (TL 20−
30 cm) of quillback rockfish (primarily Cancer spp.)
and yelloweye rockfish (euphausiids), yet larger
sizes of both species consumed shrimp (Pandalus
spp.) and fish. Yelloweye rockfish, however, con-
sumed more fish than similarly sized quillback rock-
fish (Fig. 5).

In the size classes of lingcod examined (59.2−
94.3 cm), ontogenetic shifts in prey type were less
evident (Fig. 5). Fish, alone or in combination with
Pacific octopus Enteroctopus dofleini, dominated the
stomach contents of all size classes of this species,
with the notable exception of the numerical domi-
nance of euphausiids (which had a TL of ~3 cm) in
the largest lingcod size class. Nevertheless, lingcod
consistently consumed larger prey items relative to
quillback and yelloweye rockfish (Fig. 4B). Sample

sizes were insufficient to examine the diets of yellow-
tail rockfish (Table 2); the few stomachs collected
contained euphausiids and benthic shrimp (Fig. S5).

4.  DISCUSSION

Overall, reef fish TPs were positively associated
with body size and gape size, but varied by species.
The trophic hierarchy among fish species, however,
was unrelated to observed mean body sizes or known
maximum sizes, which contradicted our expectation
(Romanuk et al. 2011, Ríos et al. 2019). The mean TP
of the largest predatory fish, lingcod, was lower than
that of quillback and yelloweye rockfishes, which, on
average, were 51 and 37% smaller than lingcod. Fur-
ther, yellowtail rockfish had the smallest average size
in our sample, yet in some model estimations their
mean TP did not differ significantly from that of ling-
cod. While the 4 species examined are only a small
component of the more diverse fish community
inhabiting our study area (Frid et al. 2018), our
results suggest that factors other than body size may
be influencing TPs in this community.

Species differences in morphometric traits sug-
gested by Ríos et al. (2019) and phylogenetic history
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Fig. 5. Percent composition of prey types consumed by different size classes of predators. Numbers on the right in italics indicate 
sample size of predators in each size class
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(i.e. taxonomic order) (Romanuk et al. 2011) are un -
likely to explain our results. The 4 species we exam-
ined are Scorpaeniformes with similar fin positions
(pelvic and dorsal) and relative mouth size (see Ríos
et al. 2019). Moreover, all species demonstrated sim-
ilar strong positive relationships in gape width and
length (Fig. S3).

Rockfish are known for high speciation in their
evolutionary history (~70 species in the northeast
Pacific, ~36 in British Columbia), where sympatric
species display diet (Murie 1995) and habitat (Love et
al. 2002) differences that have resulted in niche par-
titioning (Olson et al. 2019a). In a phylogenetic study
of multiple Sebastes species, morphological traits
associated with foraging, such as number and length
of gill rakers, had strong associations with may be an
important factor in identifying TP (Ingram & Shurin
2009). The extent to which gill rakers and other mor-
phometric characteristics influence TP in the fish
communities of our study area requires further inves-
tigation. Among gape metrics, horizontal oral gape
may be the best morphological measurement to esti-
mate maximum prey size a fish will consume (Mihal-
itsis & Bellwood 2017), and thus may be an important
factor in identifying TP.

The lack of a size-based trophic hierarchy among
species could, potentially, reflect the large proportion
of small prey found within predator stomachs. Large
numbers of euphausiids, for example, were present
in the largest lingcod size class in this study. Con-
sumption of small prey items, which have lower
 handling times than larger items, is consistent with a
theoretical expectation of minimizing costs (Werner
1974, Gill 2003). Alternatively, skill and experience
in foraging strategies may be acquired with age
(Graeb et al. 2006).

Our field sites included protected inlets and ex -
posed outside waters. Prey availability and oceano-
graphic conditions likely vary within this large area.
Spatial heterogeneity might lead to variation in diet
and growth rates within species (Love et al. 2002,
West et al. 2014, Olson et al. 2019b), potentially af -
fecting size-based TPs. Perhaps consistent with this
notion, the TPs of large quillback rockfish and mid-
sized yelloweye rockfish ranged across ~1.0 and ~0.5
TPs, respectively. Spatial analyses are still required
to understand the underlying mechanisms. Pairing
localized samples of prey base to predator isotope
signatures with closer temporal sampling may yield
clearer results.

In Alaska, demersal yelloweye and quillback rock-
fishes had similar yet slightly lower TPs (4.4 and 4.0,
respectively; Kline 2007) to calculations in this study

(Table 4). Similar to our study, Alaskan yellow eye
and quillback rockfish also had higher TPs and more
enriched δ13C values than yellowtail rockfish (Kline
2007). Depleted δ13C signatures in other pela gic
rockfish (e.g. black rockfish Sebastes melanops) rel-
ative to demersal rockfish have also been demon-
strated on exposed coastlines of British Columbia
(Olson et al. 2019a). Both yellowtail rockfish and
lingcod tend to consume a large proportion of pelagic
prey in their diet (Love et al. 2002, Beaudreau & Ess-
ington 2007). Pelagic prey are likely to be foraging
on basal marine-derived energy (Kline 2007), which
may explain the relatively depleted, yet variable,
δ13C signatures for more pelagically associated
 predators.

Despite the lack of a size-based hierarchy among
species, TP scaled positively with body size within
species, which is consistent with both metabolic the-
ory (Cohen et al. 1993) and empirical findings of allo-
metric scaling in other temperate fishes (Jennings et
al. 2001, Juanes 2016). While species had a signifi-
cant effect on TP, differences in body size−TP slopes
were not found among yelloweye rockfish, lingcod,
and yellowtail rockfish. The more rapid increase in
TP with size by quillback rockfish may reflect a wider
diversity of prey choices relative to other species
examined in this study (Fig. 5). Alternatively, varia-
tion within fish species, particularly in quillback,
could be due to factors unexplored here, such as site
or demography (age, sex, etc.) differences.

Our findings demonstrate the importance of both
size and species in rocky reef food web structuring.
Our inter-specific comparison suggests that some
smaller-bodied species of predators can have signifi-
cant ecological roles, which has potential implica-
tions for ecosystem-based fisheries management. At
the same time, large size classes of fish are being lost
globally due to fishery removals and to the combined
effects of ocean warming and deoxygenation, which
affect metabolic rates and limit maximum fish sizes
(Cheung et al. 2012). Consistent with global trends,
recent evidence indicates that large size classes of
quillback and yelloweye rockfish are being lost from
this coastal British Columbia study area (McGreer &
Frid 2017, Eckert et al. 2018). Consequently, the
trophic structure of this ecosystem may be in the pro-
cess of being degraded (Harvey et al. 2006, Strong &
Frank 2010). A combination of more conservative
fishery management practices and additional marine
protected areas may be required to reverse this trend
(Berkeley et al. 2004, Baskett & Barnett 2015).

When evaluating the consequences of marine
predator declines, it is important to keep in mind that
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TP is only one measure of ecological role. Species
clearly remains an important factor in understanding
food webs; as such, predator diversity should be con-
sidered. Moreover, theoretical and empirical evi-
dence suggest that large size classes of predators
may influence lower TPs not only through prey con-
sumption, but also via predator−prey behavioral inter-
actions and their cascading effects (Heithaus et al.
2008, Rizzari et al. 2014, Madin et al. 2016). Thus,
large predatory fishes that are not necessarily at the
top of a trophic hierarchy, as lingcod in this study
area appear to be, may still influence the distribu-
tions and foraging rates of prey (Frid et al. 2012),
potentially influencing community structure and
function (Heithaus et al. 2008, Frid et al. 2013).
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